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Abstract 
The effects of small-scale structure are frequently 
ignored in reservoir simulation, although they may 
have a significant effect on hydrocarbon recovery. 
Many sandstones exhibit lamination, and in such 
rock structures, permeability may vary by an order 
of magnitude over distances of a centimetre or less. 
Frequently, the laminae are inclined with respect to 
the pressure gradient, which gives rise to crossflow 
within the unit. In this case a tensor may be used to 
represent the effective permeability of the bed. 

In this paper the effect of small-scale geological 
structure on single phase flow is investigated using 
a model of a crossbedded unit to determine which 
factors have the greatest effect on crossflow. In 
addition, a range of other types of bedding are 
considered, including models with stochastic 
variation. We have found that, in general, the 
geometry of the sedimentary structure has a 
significant effect on flow. The crossflow is greater 
(and therefore tensors are more likely to be 
necessary) when the angle of the laminae is large 
relative to the pressure gradient (up to 450), when 
the permeability contrast between laminae is large, 
or when the structure is asymmetric. 

1. Introduction 
Small-scale sedimentary structures, such as laminae 
and beds have been described in detail by several 
authors1,2. However, it was not usually appreciated 
that these laminated structures can have a 
significant effect on fluid flow. Studies using probe 
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permeameters3,4 have shown that permeabilities 
may vary by an order of magnitude or more 
between laminae. On the other hand, reservoir 
engineers are often unfamiliar with detailed rock 
structures and do not include these small-scale 
features in their flow models. Also, it is considered 
too time-consuming to build models starting at 
scales of mm or cm, and to scale up the flow 
properties (such as relative permeability and 
capillary pressure) to the full field scale. Instead, 
reservoir models commonly focus on the stochastic 
generation of geological units, at scales of metres or 
larger, with the implicit assumption that rocks can 
be modelled as homogeneous at smaller scales. 
However, small-scale features, such as laminae, 
can have a significant effect on hydrocarbon 
recovery due to capillary trapping5,6. If the 
processes of fluid flow are to be accurately 
modelled and understood, it is important for 
geologists and engineers to work together to create 
models which are geologically realistic at all scales. 

In this paper, we derive permeability models for a 
variety of sedimentary structures, (see for example 
Figure 1), starting at the lamina scale with 
gridblocks of mm-cm size. We show how different 
structures affect single phase flow, and how these 
effects may be captured by using tensor effective 
permeabilities, to simulate flow at the bedform scale 
(dm-m). 

2. Effective Permeability 
Effective permeability, keff, is defined as the 
penneability of a homogeneous block which, under 
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the same pressure boundary conditions, will give 
the same average flows as the region the block is 
replacing. It is assumed that the flow is uniform 
(linear, steady-state flow), because effective 
permeability may not be uniquely defined for non­
uniform flow 7. The effective permeability is not 
simply an intrinsic property of a rock but also 
depends on the boundary conditions (i.e. the 
permeabilities and pressure distributions within the 
surrounding rock). In general, a flow simulation 
with appropriate boundary conditions is required in 
order to calculate the effective permeability. 
However, there are some well known cases where 
the effective permeability may be calculated 
analytically. For uniform flow along continuous 
parallel layers, the effective permeability is the 
arithmetic average, ka, given by: 

where i=I,2, ... n is the number of layers, and ki and 
ti are the permeability and thickness, respecti vel y, 
of the i-th layer8. For uniform flow perpendicular 
to continuous parallel layers, the effective 
permeability is given by the harmonic average, kh, 
where: 

[

.£tj/kij_1 
k 

1=1 h= -­
n 
I,ti 
i=l 

In the case of correlated random permeabilities with 
a log-normal permeability distribution, the effective 
permeability is approximated by the geometric 
mean, kg, in 2D9, where 

In 3D, keff also depends on the variance, cr2, of 
In(k), and is approximated by: 

ken = kg(l + cr2/6). 

The above formulae for keff are very useful, but 
they do not generally apply due to the more 
complex geometry and variability which occurs in 
nature. Very few rocks have permeability 
distributions which are exactly ordered, or purely 
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random. Most show a combination of lamination 
with stochastic variation. Furthermore, the flow 
direction is commonly at an angle to the laminae, 
and this can give rise to crossflow (Figure 2). The 
effective permeability may then be represented by a 
tensor,k, to take account of crossflow. 

or 

[ 
kxx kxy ] 

~ = kyx kyy in 2D, 

[ 

kxx 

~= kyx 
kzx 

kxy kxz] 
kyy kyz in 3D. 
kzy kzz 

For example, kxy measures the amount of flow in 
the x-direction due to a pressure gradient in the y­
direction, and so on. 

For flow at an angle to continuous parallel layers, 
the effective permeability tensor may still be 
calculated analytically, by rotation of the axes. (Co­
ordinate transformations are treated in many 
mathematical textbooks 10.) 

k = [ kacos2S + khsin2S (ka-kh)sinScosS l' 
= (ka-kh)sinScosS kasin2S + khCOS2S 

where ka and kh are the arithmetic and harmonic 
averages respectively, and S is the angle of the 
layers to the x-axis, as shown in Figure 2. Here we 
are assuming that the area considered is far from 
any boundaries. We can see from this formula that 
the off-diagonal terms, which reflect crossflow, will 
become larger as 

a) S increases from 00 to 450 , 

and 
b) (ka-kh) increases, or the permeability 

contrast between lamina increases. 
Figures 3 a) and 3 b) show the effect of varying the 
lamina angle and the permeability contrast 
respectively. 

If significant crossflow is present, it may need to be 
included in simulations at a larger scale. 
("Significant" crossflows are considered to be those 
greater than 10% of the direct flow). This requires 
calculation of flow using tensor permeabilities. 
Such simulations require a 9-point finite difference 
scheme instead of the 5-point one in 2D, and in 3D 
require a 19-point scheme instead of a 7-point one. 
(The equations for simulating flow using tensors in 
a 2D model are presented in Reference 11.) A 
simulation using tensors is, consequently, more 
time-consuming than one which only uses single 
permeability values (scalars) or one which uses a 
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permeability in each direct jon (vector). Therefore, 
it is important to assess in advance, which structures 
require full tensors to accurately describe their flow 
properties and which do not. In the following 
sections we show which kinds of bedding are most 
likely to require tensors and which are not. 

3. Crossflow in Cross bedded Structures 
To illustrate the effect of bed geometry on 
crossflow, we have chosen a "crossbed model" (i.e. 
a section of a cross-bedded sandstone). This model 
is derived from a study of the Ardross outcrop, near 
St. Monance, Fife, Scotland. The cross beds were 
deposited under deltaic conditions, and comprise 
alternating layers of high and low permeability. 
Probe permeameter measurements of a sample of 
this rock (Figure 4) indicate that the permeability of 
the micaceous laminae is approximately 100 mD, 
and that of the sandy laminae is about 1200 mD. 
We have assumed that the permeability within the 
laminae is homogeneous and isotropic12. The shape 
of the laminae was digitised from a photograph 
(Figure 1). The average size of a crossbed is 1.0 m 
x 0.8 m, and this is modelled using a grid of 240 x 
220 blocks. Because of the complex shape of the 
bedform, the tensors for these crossbeds cannot be 
calculated analytically. We have used a periodic 
boundary condition method, similar to that 
described by Durlofsky 13, but with a finite 
difference method for setting up the pressure 
equations14. The base case model (model 1) is 
shown in Figure 5. The flow through this model is 
illustrated using flow vectors, the length of the 
arrow being proportional to the volumetric flow 
rate. The tensor for this model, along with those for 
the other models, is given in Table 1. The ratio 
kxy/kxx equals 0.21, indicating that there is 
significant crossflow in this model. 

Four modifications to the original model were made 
to test the sensitivity of the tensor to permeability 
distribution (Table 1). Model 2 (Figure 6) has a 
high permeability bottomset of 1200 mD, instead of 
a low permeability value of lOOmD. The overall 
permeability of this model is higher, but the amount 
of crossflow, as measured by kxylkxx, is similar. In 
model 3 (Figure 7), the permeability of the 
bottom set has been reduced from 100 mD to 1 mD. 
This inhibits crossflow, and so the kxy, kyx and kyy 
terms become negligibly small. Model 4 contains 
tangentially graded foresets, where the permeability 
increases from 100 mD at the bottom of the set to 
1200 mD at the top (Figure 8). In this case, the 
crossflow is only a few percent, because most of the 
flow is channelled along the higher permeabilities 
of the upper part of the model. Finally, in model 5 
which is similar to modell, the width of the low 
permeability laminae were reduced by half. The 
crossflow in this model is less than that in models 1 
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and 2, but is still significant. Thus, we conclude 
that crossflow in crossbeds is generally significant 
(>20%), but may be less important where there are 
very low permeability bottom sets, or where there is 
tangential grading, giving rise to a high 
permeability region at the top of the cross bed unit. 

It is common practice to scale up permeability using 
a combination of arithmetic, geometric and 
harmonic averages 1 5. For example, the arithmetic 
average of a permeability sample may be used to 
calculate the effective permeability for bed-parallel 
flow, and the harmonic average may be used for 
flow transverse to the bedding. This procedure is 
correct for a layered model, as shown in section 2. 
To test the validity of this approach in crossbedded 
systems, we calculated ka, kg and kh for each of the 
models. The results are presented in Table 2. In all 
cases, the arithmetic average overestimated the kxx 
tensor value. This effect is most severe in the case 
of model 3 (very low permeability bottomset) with 
kalkxx = 1.45, but the effect is only slight for model 
4 (tangential grading) where ka is only 3% larger 
than kxx. Comparing kh with kyy, we find that, with 
the exception of model 3, kh underestimates kyy. 
This effect is slight, however, in the case of model 
4. We conclude therefore that only in the case of 
model 4 can the effective permeability be 
represented adequately (to within a few percent) 
using ka for flow in the horizontal direction and kh 
for flow in the vertical direction. The errors in 
using ka and kh instead of kxx and kyy are greater 
than 10% in the other cases, and are sometimes 
significantly larger. It can be seen from Table 2 that 
kg, which is a good approximation for the effective 
permeability of a random distribution, was 
inappropriate for the crossbedded models tested 
here. 

4. Crossflow in Other Sedimentary Structures 
A variety of other types of sedimentary structures 
have been modelled to assess whether or not 
crossflow is important, namely, hummocky cross­
stratification, ripple lamination with stochastic 
variability, and a 3D crossbed model. 

a) Hummocky Cross-stratification 
Hummocky cross-stratification is common in 
shallow marine environments16. The bedform is 
approximately symmetrical (see model in Figure 9). 
Hence, any crossflow generated in the first half of 
the model is balanced by crossflow in the opposite 
direction in the second half of the model. The result 
is that there is no net crossflow, so tensors are not 
required for this type of model (provided the size of 
the gridblocks equals the size of the bedform or 
multiple bedforms). 

b) Ripple Lamination with Stochastic Permeability 
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As perfectly regular lamination does do not occur in 
nature, we have tested models which combine 
regularly deterministic laminae with a stochastic 
permeability field. The first of these models is a 
stochastic ripple model, shown in Figure 10. The 
model is constructed by repeating a ripple template 
to create a field in which the ripple properties can 
vary in space. 10 x 10 ripple template blocks, each 
of 3.2 cm x 2.0 cm, were modelled. In this case, the 
high permeability component of the template was 
kept constant throughout the model, at 100 mD but 
the low permeability component was varied, using a 
correlated random function, to produce a model 
which looked similar to images of the ripples in the 
Ardross Outcrop. (It is assumed that the dark­
coloured laminations have lower permeability.) The 
net crossflow for this model is significant 
(kxy/kxx=0.12) and is equal to the amount of 
crossflow for a deterministic model with constant 
permeability contrast. 

c) Ripple Lamination with Stochastic Structure 
In these models, we superimposed different 
amounts of stochastic variation on the deterministic 
ripple model, so that the laminae were no longer 
continuous. As anticipated, the amount of 
crossflow decreases as the amount of stochastic 
variation (measured by the standard deviation, cr) 

increases. When cr = 0.5 (Figure lIa), kxy/kxx = 

0.15, but when cr = 2.0 (Figure lIb), kxy/kxx = 0.10 
(Table 3). We found that the amount of crossflow 
remains significant while the standard deviation of 
the deterministic component is greater than that of 
the stochastic component14. In practice, we noticed 
that if the laminae are easily identifiable they are 
likely to generate significant crossflow. In the 
models where the stochastic variation dominates, 
we might expect that the geometric average of the 
permeabilities would be a good estimate of the 
effective permeability. However, we found that this 
was not the case. Table 3 shows that, as the 
stochastic component was increased, the kxx and 
kyy values remained approximately constant, and 
dId not converge on kg. 

d) 3D Cross bedded Model 
Finally, in order to evaluate the effects of a third 
dimension, a 3D crossbedded model was tested 
(Figure 12). This model consists of alternating 
layers of 20 mD and 100 mD. The model is 
symmetrical in the x-y and x-z planes, so the kx , 
~x, kxz, kzx terms are zero, as shown in Figure 12. 
The ratio kyzlkyy is less than 10%, so the amount of 
crossflow in the yz plane is quite small. However, 
this amount of crossflow is likely to be an 
underestimate, because the 3D grid used was quite 
coarse, (due to memory limitations in the 
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computer). In future, we plan more detailed 
calculation of 3D models to test the influence of 3D 
effects on crossflow. 

5. Conclusions 
We have found that the effective permeability is 
strongly influenced by the geometry of the bedding, 
and that conventional averaging techniques may 
give misleading estimates. Tests on crossbedded 
models showed that: 
• ka and kh are usually poor approximations for 

kxx and kyy (in crossbedded sandstones); 
• kg is also a poor estimate of effective 

permeability, even when stochastic variation is 
superimposed on the structure. 

A tensor effective permeability is often required to 
capture crossflow. Tensors are likely to be 
necessary when: 
• laminae are inclined at a large angle (up to 450) 

to the pressure gradient, 
• there is a high permeability contrast, 
• the laminae are of approximately equal 

thickness. 

Tensors are less important when: 
• the bedform is symmetrical, 
• there are horizontal barriers (e.g. low 

permeability bottomsets), 
• there are high permeability streaks or pathways 

(tangentially graded crossbeds). 

6. Discussion 
In this study, we have concentrated on the influence 
of primary depositional features on fluid flow. We 
have not included the effects of faults, fractures and 
diagenetic changes. However, tensors may also be 
used to take account of crossflow which may arise 
due to any such features, provided the spatial 
permeability structure can be quantified. We infer 
that tensors are most likely to be necessary when 
structure (bedding or faults) are inclined at a high 
angle (up to 450) to the pressure gradient. 

Once tensor effective permeabilities have been 
determined for a structural permeability field, they 
should be incorporated into simulations at larger 
scales. Because sediment bedforms are frequently 
repeated over scales of lOs of meters or more, the 
same form of tensor may be used to represent the 
effective permeability over a whole formation. The 
tensor may, however, require to be scaled to allow 
for permeability trends, or it may be varied 
stochastically to take account of natural variation in 
the rock. The number of scale-up stages required 
depends on the geology of the reservoir. At some 
scales, the net crossflow may be negligible, and a 
diagonal tensor is produced. It still may be 
important, however, to include the crossflow terms 
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from smaller scales in the calculations so that this 
diagonal tensor is determined correctly. 

If a rock structure has a significant effect on single 
phase flow, the effect on multi-phase flow is likely 
to be even more important. If we consider oil and 
water, which are immiscible fluids, the flow through 
the medium will also be affected by gravity and 
capillary forces. The amount of crossflow will 
therefore be different for the oil and the water 
phases, and a separate tensor will be required to 
describe each phase. Thus to make accurate 
prediction of oil recovery in crossbedded 
sandstones, two-phase tensor simulations may be 
required 17. It is clear that reservoir simulation 
requires the combined efforts of both geologists and 
engineers, so that flow can be modelled accurately, 
at all scales. 
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Table 1 

Model Model kxx 
Number Description 

1 base case 534 

2 high perm. bottom set 685 

3 very low perm. bottomset 463 

4 tangential grading 823 

5 thin low perm. laminae 765 

Table 2 

Model Model ka 
Number Description 

1 base case 677 

2 high perm. bottomset 777 

3 very low perm. bottomset 668 

4 tangential grading 848 

5 thin low perm. laminae 892 

Table 3 

Std. Dev. kxx kvv 

0.0 47.5 33.5 

0.5 49.5 35.7 

1.0 48.3 35.9 

1.5 46.9 36.1 

2.0 45.7 36.3 
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presented at the SPE Annual Technical 
Conference in New Orleans, Louisiana, 25th-
28th September, 1994. 

kyy kxy kxylkxx 

232 114 0.213 

306 148 0.216 

9 4 0.009 

404 21 0.026 

337 133 0.174 

kg kh keff(NF) 

368 193 509 

461 229 622 

242 11 480 

647 395 823 

599 295 738 

kxv kll 

7.1 50.2 

7.2 53.0 

6.5 53.5 

5.5 54.2 

4.4 55.0 



Figure I 
A crossbedded unit, near St. Monance, Fife, Scotland. 

Figure 2 
Flow through layers at an angle. (Low penneability 
laminae are represented by shading.) 
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Figure 3 
The dependence of 2D crossflow (measured by kxy/k xx ) on: 
a) lamina angle and b) permeability contrast. 
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Histogram of probe permeameter measurements of a cross bedded 
sandstone sample from the Ardross Outcrop, Fife, Scotland. 
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Figure 5 
Flow through crossbed model 1. 

Figure 6 
Flow through crossbed model 2. 
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Figure 7 
Flow through crossbed model 3. 
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Figure 8 
Flow through crossbed model 4. 
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Figure 9 
Flow through a model of a hummocky bed. 

Figure 10 
Stochastic ripple model. 
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Figure 11 
Hybrid stochastic/detenninistic models. The standard deviation of In(k) in 
lhe stochastic component is a) 0.5 and b) 2.0. 
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