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Abstract

The effects of small-scale structure are frequently
ignored in reservoir simulation, although they may
have a significant effect on hydrocarbon recovery.
Many sandstones exhibit lamination, and in such
rock structures, permeability may vary by an order
of magnitude over distances of a centimetre or less.
Frequently, the laminae are inclined with respect to
the pressure gradient, which gives rise to crossflow
within the unit. In this case a tensor may be used to
represent the effective permeability of the bed.

In this paper the effect of small-scale geological
structure on single phase flow is investigated using
a model of a crossbedded unit to determine which
factors have the greatest effect on crossflow. In
addition, a range of other types of bedding are
considered, including models with stochastic
variation. We have found that, in general, the
geometry of the sedimentary structure has a
significant effect on flow. The crossflow is greater
(and therefore tensors are more likely to be
necessary) when the angle of the laminae is large
relative to the pressure gradient (up to 45°), when
the permeability contrast between laminae is large,
or when the structure is asymmetric.

1. Introduction

Small-scale sedimentary structures, such as laminae
and beds have been described in detail by several
authors!:2, However, it was not usually appreciated
that these laminated structures can have a
significant effect on fluid flow. Studies using probe
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permeameters3-4 have shown that permeabilities
may vary by an order of magnitude or more
between laminae. On the other hand, reservoir
engineers are often unfamiliar with detailed rock
structures and do not include these small-scale
features in their flow models. Also, it is considered
too time-consuming to build models starting at
scales of mm or cm, and to scale up the flow
properties (such as relative permeability and
capillary pressure) to the full field scale. Instead,
reservoir models commonly focus on the stochastic
generation of geological units, at scales of metres or
larger, with the implicit assumption that rocks can
be modelled as homogeneous at smaller scales.
However, small-scale features, such as laminae,
can have a significant effect on hydrocarbon

recovery due to capillary trapping’-6. If the
processes of fluid flow are to be accurately
modelled and understood, it is important for
geologists and engineers to work together to create
models which are geologically realistic at all scales.

In this paper, we derive permeability models for a
variety of sedimentary structures, (see for example
Figure 1), starting at the lamina scale with
gridblocks of mm-cm size. We show how different
structures affect single phase flow, and how these
effects may be captured by using tensor effective
permeabilities, to simulate flow at the bedform scale
(dm-m).

2. Effective Permeability
Effective permeability, kegr, is defined as the
permeability of a homogeneous block which, under



2

the same pressure boundary conditions, will give
the same average flows as the region the block is
replacing. It is assumed that the flow is uniform
(linear, steady-state flow), because effective
permeability may not be uniquely defined for non-
uniform flow7. The effective permeability is not
simply an intrinsic property of a rock but also
depends on the boundary conditions (i.e. the
permeabilities and pressure distributions within the
surrounding rock). In general, a flow simulation
with appropriate boundary conditions is required in
order to calculate the effective permeability.
However, there are some well known cases where
the effective permeability may be calculated
analytically. For uniform flow along continuous
parallel layers, the effective permeability is the
arithmetic average, ka, given by:

n
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where i=1,2, ...n is the number of layers, and k; and
t; are the permeability and thickness, respectively,
of the i-th layer8. For uniform flow perpendicular
to continuous parallel layers, the effective
permeability is given by the harmonic average, kp,
where:
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In the case of correlated random permeabilities with
a log-normal permeability distribution, the effective
permeability is approximated by the geometric
mean, kg, in 2D9, where

n
kg = ex .len(ki)/n:l .
1=

In 3D, keff also depends on the variance, 62, of
In(k), and is approximated by:

kefr = kg(1 + G%/6).

The above formulae for kefr are very useful, but
they do not generally apply due to the more
complex geometry and variability which occurs in
nature. Very few rocks have permeability
distributions which are exactly ordered, or purely
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random. Most show a combination of lamination
with stochastic variation. Furthermore, the flow
direction is commonly at an angle to the laminae,
and this can give rise to crossflow (Figure 2). The
effective permeability may then be represented by a
tensor, k, to take account of crossflow.

m k k
k= Y ]in 2D,
= Lkyx kyy
[ kxx kxy Kyz
or £= kyx kyy kyz in 3D.
L kzx kZy kzz

For example, kxy measures the amount of flow in
the x-direction due to a pressure gradient in the y-
direction, and so on.

For tlow at an angle to continuous parallel layers,
the effective permeability tensor may still be
calculated analytically, by rotation of the axes. (Co-
ordinate transformations are trecated in many

mathematical textbooks10.)

. k0520 + kpsin28  (ka-kp)sinBcosf
(ka-kp)sinBcos®  kasin20 + kycos28 |

where k, and ky, are the arithmetic and harmonic

averages respectively, and 6 is the angle of the
layers to the x-axis, as shown in Figure 2. Here we
are assuming that the area considered is far from
any boundaries. We can see from this formula that
the off-diagonal terms, which reflect crossflow, will
become larger as

a) 0 increases from (° to 459,
and
b) (ka-kp) increases, or the permeability
contrast between lamina increases.
Figures 3 a) and 3 b) show the effect of varying the
lamina angle and the permeability contrast
respectively.

It significant crossflow is present, it may need to be
included in simulations at a larger scale.
("Significant" crossflows are considered to be those
greater than 10% of the direct flow). This requires
calculation of flow using tensor permeabilities.
Such simulations require a 9-point finite difference
scheme instead of the 5-point one in 2D, and in 3D
require a 19-point scheme instead of a 7-point one.
(The equations for simulating flow using tensors in
a 2D model are presented in Reference 11.) A
simulation using tensors is, consequently, more
time-consuming than one which only uses single
permeability values (scalars) or one which uses a
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permeability in each direction (vector). Therefore,
it is important to assess in advance, which structures
require full tensors to accurately describe their flow
propertics and which do not. In the following
sections we show which kinds of bedding are most
likely to require tensors and which are not.

3. Crossflow in Crossbedded Structures

To illustrate the effect of bed geometry on
crossflow, we have chosen a "crossbed model" (i.e.
a section of a cross-bedded sandstone). This model
is derived from a study of the Ardross outcrop, near
St. Monance, Fife, Scotland. The crossbeds were
deposited under deltaic conditions, and comprise
alternating layers of high and low permeability.
Probe permeameter measurements of a sample of
this rock (Figure 4) indicate that the permeability of
the micaceous laminae is approximately 100 mD,
and that of the sandy laminae is about 1200 mD.
We have assumed that the permeability within the
laminae is homogeneous and isotropic!2. The shape
of the laminae was digitised from a photograph
(Figure 1). The average size of a crossbed is 1.0 m
X (.8 m, and this is modelled using a grid of 240 x
220 blocks. Because of the complex shape of the
bedform, the tensors for these crossbeds cannot be
calculated analytically. We have used a periodic
boundary condition method, similar to that
described by Durlofsky!3, but with a finite
difference method for setting up the pressure

equations!4. The base case model (model 1) is
shown in Figure 5. The flow through this model is
illustrated using flow vectors, the length of the
arrow being proportional to the volumetric flow
rate. The tensor for this model, along with those for
the other models, is given in Table 1. The ratio
kxy/kxx equals 0.21, indicating that there is
significant crossflow in this model.

Four modifications to the original model were made
to test the sensitivity of the tensor to permeability
distribution (Table 1). Model 2 (Figure 6) has a
high permeability bottomset of 1200 mD, instead of
a low permeability value of 100mD. The overall
permeability of this model is higher, but the amount
of crossflow, as measured by kxy/kxx, is similar. In
model 3 (Figure 7), the permeability of the
bottomset has been reduced from 100 mD to 1 mD.
This inhibits crosstlow, and so the kxy, kyx and kyy
terms become negligibly small. Model 4 contains
tangentially graded foresets, where the permeability
increases from 100 mD at the bottom of the set to
1200 mD at the top (Figure 8). In this case, the
crossflow is only a few percent, because most of the
flow is channelled along the higher permeabilities
of the upper part of the model. Finally, in model §
which is similar to model 1, the width of the low
permeability laminae were reduced by half. The
crosstlow in this model is less than that in models 1
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and 2, but is still significant. Thus, we conclude
that crosstlow in crossbeds is generally significant
(>20%), but may be less important where there are
very low permeability bottomsets, or where there is
tangential grading, giving rise to a high
permeability region at the top of the crossbed unit.

It is common practice to scale up permeability using
a combination of arithmetic, geometric and
harmonic averages!>. For example, the arithmetic
average of a permeability sample may be used to
calculate the effective permeability for bed-parallel
flow, and the harmonic average may be used for
flow transverse to the bedding. This procedure is
correct for a layered model, as shown in section 2.
To test the validity of this approach in crossbedded
systems, we calculated kg, kg and ky, for each of the
models. The results are presented in Table 2. In all
cases, the arithmetic average overestimated the kyy
tensor value. This effect is most severe in the case
of model 3 (very low permeability bottomset) with
ka/kxx = 1.45, but the effect is only slight for model
4 (tangential grading) where k; is only 3% larger
than kxx. Comparing ky with kyy, we find that, with
the exception of model 3, kp underestimates kyy.
This effect is slight, however, in the case of model
4. We conclude therefore that only in the case of
model 4 can the effective permeability be
represented adequately (to within a few percent)
using k, for flow in the horizontal direction and kp
tfor flow in the vertical direction. The errors in
using ka and ky, instead of kxx and kyy are greater
than 10% in the other cases, and are sometimes
significantly larger. It can be seen from Table 2 that
kg, which is a good approximation for the effective
permeability of a random distribution, was
inappropriate for the crossbedded models tested
here.

4., Crossflow in Other Sedimentary Structures

A variety of other types of sedimentary structures
have been modelled to assess whether or not
crossflow is important, namely, hummocky cross-
stratification, ripple lamination with stochastic
variability, and a 3D crossbed model.

a) Hummocky Cross-stratification

Hummocky cross-stratification is common in
shallow marine environments!6. The bedform is
approximately symmetrical (see model in Figure 9).
Hence, any crosstlow generated in the first half of
the model is balanced by crossflow in the opposite
direction in the second half of the model. The result
is that there is no net crossflow, so tensors are not
required for this type of model (provided the size of
the gridblocks equals the size of the bedform or
multiple bedforms).

b) Ripple Lamination with Stochastic Permeability
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As perfectly regular lamination does do not occur in
nature, we have tested models which combine
regularly deterministic laminae with a stochastic
permeability field. The first of these models is a
stochastic ripple model, shown in Figure 10. The
model is constructed by repeating a ripple template
to create a field in which the ripple properties can
vary in space. 10 x 10 ripple template blocks, each
of 3.2 cm x 2.0 cm, were modelled. In this case, the
high permeability component of the template was
kept constant throughout the model, at 100 mD but
the low permeability component was varied, using a
correlated random function, to produce a model
which looked similar to images of the ripples in the
Ardross Outcrop. (It is assumed that the dark-
coloured laminations have lower permeability.) The
net crossflow for this model is significant
(kxy/kxx=0.12) and is equal to the amount of
crossflow for a deterministic model with constant
permeability contrast.

¢) Ripple Lamination with Stochastic Structure

In these models, we superimposed different
amounts of stochastic variation on the deterministic
ripple model, so that the laminae were no longer
continuous.  As anticipated, the amount of
crossflow decreases as the amount of stochastic

variation (measured by the standard deviation, &)
increases. When ¢ = 0.5 (Figure 11a), kxy/kxx =

0.15, but when ¢ = 2.0 (Figure 11b), kxy/kxx = 0.10
(Table 3). We found that the amount of crossflow
remains significant while the standard deviation of
the deterministic component is greater than that of
the stochastic componentl4. In practice, we noticed
that if the laminae are easily identifiable they are
likely to generate significant crossflow. In the
models where the stochastic variation dominates,
we might expect that the geometric average of the
permeabilities would be a good estimate of the
effective permeability. However, we found that this
was not the case. Table 3 shows that, as the
stochastic component was increased, the kxx and
kyy values remained approximately constant, and
dl(i, not converge on kg.

d) 3D Crossbedded Model
Finally, in order to evaluate the effects of a third
dimension, a 3D crossbedded model was tested
(Figure 12). This model consists of alternating
layers of 20 mD and 100 mD. The model is
symmetrical in the x-y and x-z planes, so the kyy,
kyx, kxz, kzx terms are zero, as shown in Figure 15.
e ratio Kyz/kyy is less than 10%, so the amount of
crossflow in the yz plane is quite small. However,
this amount of crossflow is likely to be an
underestimate, because the 3D grid used was quite
coarse, (due to memory limitations in the
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computer). In future, we plan more detailed
calculation of 3D models to test the influence of 3D
effects on crossflow.

5. Conclusions

We have found that the effective permeability is
strongly influenced by the geometry of the bedding,
and that conventional averaging techniques may
give misleading estimates. Tests on crossbedded
models showed that:

* kja and ky are usually poor approximations for
kxx and kyy (in crossbedded sandstones);

kg is also a poor estimate of effective
permeability, even when stochastic variation is
superimposed on the structure.

A tensor effective permeability is often required to
capture crossflow. Tensors are likely to be
necessary when:

+ laminae are inclined at a large angle (up to 459)
to the pressure gradient,

there is a high permeability contrast,

the laminae are of approximately equal
thickness.

Tensors are less important when:

* the bedform is symmetrical,

there are horizontal barriers (e.g.
permeability bottomsets),

there are high permeability streaks or pathways
(tangentially graded crossbeds).

low

6. Discussion

In this study, we have concentrated on the influence
of primary depositional features on fluid flow. We
have not included the effects of faults, fractures and
diagenetic changes. However, tensors may also be
used to take account of crossflow which may arise
due to any such features, provided the spatial
permeability structure can be quantified. We infer
that tensors are most likely to be necessary when
structure (bedding or faults) are inclined at a high

angle (up to 459) to the pressure gradient.

Once tensor effective permeabilities have been
determined for a structural permeability field, they
should be incorporated into simulations at larger
scales. Because sediment bedforms are frequently
repeated over scales of 10s of meters or more, the
same form of tensor may be used to represent the
effective permeability over a whole formation. The
tensor may, however, require to be scaled to allow
for permeability trends, or it may be varied
stochastically to take account of natural variation in
the rock. The number of scale-up stages required
depends on the geology of the reservoir. At some
scales, the net crossflow may be negligible, and a
diagonal tensor is produced. It still may be
important, however, to include the crossflow terms
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from smaller scales in the ¢alculations so that this
diagonal tensor is determined correctly.

If a rock structure has a significant effect on single
phase flow, the effect on multi-phase flow is likely
to be even more important. If we consider oil and
water, which are immiscible fluids, the flow through
the medium will also be affected by gravity and
capillary forces. The amount of crossflow will
therefore be different for the oil and the water
phases, and a separate tensor will be required to
describe each phase. Thus to make accurate
prediction of oil recovery in crossbedded
sandstones, two-phase tensor simulations may be
required!7. It is clear that reservoir simulation
requires the combined efforts of both geologists and
engineers, so that flow can be modelled accurately,
at all scales.
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Table 1
Model Model Kyx Kyy Kxy Kxy/kxx
Number Description
1 base case 534 232 114 0.213
2 high perm. bottomset 685 306 148 0.216
3 very low perm. bottomset 463 9 4 0.009
4 tangential grading 823 404 21 0.026
5 thin low perm. laminae 765 337 133 0.174
Table 2
Model Model ka kg kn Keff(NF)
Number Description
1 base case 677 368 193 509
2 high perm. bottomset 777 461 229 622
3 very low perm. bottomset 668 242 11 480
4 tangential grading 848 647 395 823
5 thin low perm. laminae 892 599 295 738
Table 3
Std. Dev. Kxx kyy kxy kg
0.0 47.5 33.5 7.1 50.2
0.5 49.5 35.7 7.2 53.0
1.0 48.3 35.9 6.5 53.5
1.5 46.9 36.1 5.5 54.2
2.0 45.7 36.3 4.4 55.0
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Figure 1
A crossbedded unit, near St. Monance, Fife, Scotland.

Figure 2
Flow through layers at an angle. (Low permeability
laminae are represented by shading.)
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Figure 3
The dependence of 2D crossflow (measured by k xy/k x4 ) on:
a) lamina angle and b) permeability contrast.
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Figure 4

Histogram of probe permeameter measurements of a crossbedded
sandstone sample from the Ardross Outcrop, Fife, Scotland.
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Figure 5

Flow through crossbed model 1.

In(k)
7
6
5
4
3
2
1
0

-1

Figure 6
Flow through crossbed model 2.
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Flow through crossbed model 3.

In(k)

O = N Wweea&0o -~

'
-t

Figure 8
Flow through crosshed model 4.
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Figure 9
Flow through a model of a hummocky bed.
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Figure 10
Stochastic ripple model.
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Hybrid stochastic/deterministic models. The standard deviation of In(k) in
the stochastic component is a) 0.5 and b) 2.0.
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Figure 12

A 3D trough crossbed model, showing the effective
permeability tensor.
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